Büchi Complementation and Size-Change Termination
نویسندگان
چکیده
We compare tools for complementing nondeterministic Büchi automata with a recent termination-analysis algorithm. Complementation of Büchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along with both a reduction to Büchi automata and a Ramsey-based algorithm. The Ramsey-based algorithm was presented as a more practical alternative to the automata-theoretic approach, but strongly resembles the initial complementation constructions for Büchi automata. We prove that the SCT algorithm is a specialized realization of the Ramsey-based complementation construction. To do so, we extend the Ramsey-based complementation construction to provide a containment-testing algorithm. Surprisingly, empirical analysis suggests that despite the massive gap in worst-case complexity, Ramsey-based approaches are superior over the domain of SCT problems. Upon further analysis we discover an interesting property of the problem space that both explains this result and provides a chance to improve rank-based tools. With these improvements, we show that theoretical gains in efficiency of the rank-based approach are mirrored in empirical performance.
منابع مشابه
Efficient Büchi Universality Checking
The complementation of Büchi automata, required for checking automata universality, remains one of the outstanding automata-theoretic challenges in formal verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. The best rank-based algorithm for Büchi universality, by Doyen and Raskin, employs a subsumptio...
متن کاملComplementing Semi-deterministic Büchi Automata
We introduce an efficient complementation technique for semi-deterministic Büchi automata, which are Büchi automata that are deterministic in the limit: from every accepting state onward, their behaviour is deterministic. It is interesting to study semi-deterministic automata, because they play a role in practical applications of automata theory, such as the analysis of Markov decision processe...
متن کاملBüchi Complementation Made Tight
The precise complexity of complementing Büchi automata is an intriguing and long standing problem. While optimal complementation techniques for finite automata are simple – it suffices to determinize them using a simple subset construction and to dualize the acceptance condition of the resulting automaton – Büchi complementation is more involved. Indeed, the construction of an EXPTIME complemen...
متن کاملOn Minimal Odd Rankings for Büchi Complementation
We study minimal odd rankings (as defined by Kupferman and Vardi[KV01]) for run-DAGs of words in the complement of a nondeterministic Büchi automaton. We present an optimized version of the ranking based complementation construction of Friedgut, Kupferman and Vardi [FKV06] and Schewe’s[Sch09] variant of it, such that every accepting run of the complement automaton assigns a minimal odd ranking ...
متن کاملComplementation Constructions for Nondeterministic Automata on Infinite Words
The complementation problem for nondeterministic automata on infinite words has numerous applications in formal verification. In particular, the language-containment problem, to which many verification problems are reduced, involves complementation. Traditional optimal complementation constructions are quite complicated and have not been implemented. Recently, we have developed an analysis tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009